DNA-guided assembly yields novel ribbon-like nanostructures
The research, described in a paper published online in ACS Nano, a journal of the American Chemical Society, could result in the fabrication of new nanostructured materials with desired properties.
"This is a completely new mechanism of self-assembly that does not have direct analogs in the realm of molecular or microscale systems," said Brookhaven physicist Oleg Gang, lead author on the paper, who conducted the bulk of the research at the Lab's Center for Functional Nanomaterials.
Broad classes of rod-like objects, ranging from molecules to viruses, often exhibit typical liquid-crystal-like behavior, where the rods align with a directional dependence, sometimes with the aligned crystals forming two-dimensional planes over a given area. Rod shaped objects with strong directionality and attractive forces between their ends-resulting, for example, from polarized charge distribution-may also sometimes line up end-to-end forming linear one-dimensional chains.
Neither typical arrangement is found in the DNA-tethered nanorods.
"Our discovery shows that a qualitatively new regime emerges for nanoscale objects decorated with flexible molecular tethers of comparable sizes-a one-dimensional ladder-like linear arrangement that appears in the absence of end-to-end affinity among the rods," Gang said.
Alexei Tkachenko, the CFN scientist who developed the theory to explain the exceptional arrangement, elaborated: "Remarkably, the system has all three dimensions to live in, yet it chooses to form the linear, almost one-dimensional ribbons. It can be compared to how extra dimensions that are hypothesized by high-energy physicists become 'hidden,' so that we find ourselves in a 3-D world."
Tkachenko explains how the ladder-like alignment results from a fundamental symmetry breaking:
"Once a nanorod connects to another one side-by-side, it loses the cylindrical symmetry it had when it had free tethers all around. Then, the next nanorod will preferentially bind to another side of the first, where there are still DNA linkers available."
DNA as glue
Using synthetic DNA as a form of molecular glue to guide nanoparticle assembly has been a central approach of Gang's research at the CFN. His previous work has shown that strands of this molecule-better known for carrying the genetic code of living things-can pull nanoparticles together when strands bearing complementary sequences of nucleotide bases (known by the letters A, T, G, and C) are used as tethers, or inhibit binding when unmatched strands are used. Carefully controlling those attractive and inhibitory forces can lead to fine-tuned nanoscale engineering.
In the current study, the scientists used gold nanorods and single strands of DNA to explore arrangements made with complementary tethers attached to adjacent rods. They also examined the effects of using linker strands of varying lengths to serve as the tethering glue.
After mixing the various combinations, they studied the resulting arrangements using ultraviolet-visible spectroscopy at the CFN, and also with small-angle x-ray scattering at Brookhaven's National Synchrotron Light Source (NSLS, http://www.bnl.gov/ps/nsls/about-NSLS.asp). They also used techniques to "freeze" the action at various points during assembly and observed those static phases using scanning electron microscopy to get a better understanding of how the process progressed over time.
The various analysis methods confirmed the side-by-side arrangement of the nanorods arrayed like rungs on a ladder-like ribbon during the early stages of assembly, followed later by stacking of the ribbons and finally larger-scale three-dimensional aggregation due to the formation of DNA bridges between the ribbons.
This staged assembly process, called hierarchical, is reminiscent of self-assembly in many biological systems (for example, the linking of amino acids into chains followed by the subsequent folding of these chains to form functional proteins).
The stepwise nature of the assembly suggested to the team that the process could be stopped at the intermediate stages. Using "blocker" strands of DNA to bind up the remaining free tethers on the linear ribbon-like structures, they demonstrated their ability to prevent the later-stage interactions that form aggregate structures.
"Stopping the assembly process at the ladder-like ribbon stage could potentially be applied for the fabrication of linear structures with engineered properties," Gang said. "For example by controlling plasmonic or fluorescent properties-the materials' responses to light-we might be able to make nanoscale light concentrators or light guides, and be able to switch them on demand."
Additional authors on this study include: Stephanie Vial of CFN and the International Iberian Nanotechnology Laboratory in Braga, Portugal, and Dmytro Nykypanchuk, and Kevin Yager, all of CFN.
This research was funded by the DOE Office of Science (BES), which also provides operations support for the CFN and NSLS at Brookhaven Lab.
Welcome to SUV System Ltd!
SUV System Ltd is ISO 90012008 Certified electronics distributor with 10 years of experiences.
We have built up long term business relationship with about many companies which are stockers and authorized agents. we have a steady and reliable supply to meet customer's demands to the greatest extent .Confidently, we are able to lower your cost and support your business with our years of professional service.
SUV System Ltd is Electronic Components Distributor Supplies,Find Quality Electronic Components Supplies Products IC(Integrated Circuits),Connectors,Capacitor,Resistors,Diodes,Transistors,LED at Suvsystem.com. Sourcing Other Energy, Environment, Excess Inventory Products from Manufacturers and Suppliers at Suvsystem.com
Electronic Components distributor:http://www.suvsystem.com
Connectors Distributor:http://www.suvsystem.com/l/Connectors-1.html
IC Distributor:http://www.suvsystem.com/l/IC(Integrated-Circuits)-1.html
LED Distributor:http://www.suvsystem.com/l/LED-1.html
Capacitor Distributor:http://www.suvsystem.com/l/Capacitor-1.html
Transistor Distributor:http://www.suvsystem.com/l/Transistors-1.html
Resistor Distributor:http://www.suvsystem.com/l/Resistors-1.html
Diode Distributor:http://www.suvsystem.com/l/Diodes-1.html
SUV System Ltd insists on the managing faith ofsincereness,speciality,foresight, win-win,so we build up stable-relationship customers located all over the world, including the States, Europe, Argentina, UAE, Malaysia, Australia,and India etc
we are focus on the following fields,and hope we can help you.
DM74ALS1032AN DM74ALS1032AMX_Q DM74ALS1032AMX DM74ALS1008AN_Q DM74ALS1008AN DM74ALS1008AMX DM74ALS1008AM_Q DM74ALS1008AM DM74ALS1005N_Q DM74ALS1005N DM74ALS1005MX DM74ALS1005M_Q DM74ALS1005M DM74ALS1004N_Q DM74ALS1004N DM74ALS153MX DM74ALS153M_Q DM74ALS153M DM74ALS151N_Q DM74ALS151N DM74ALS151MX DM74ALS151M_Q DM74ALS151M DM74ALS14SJX DM74ALS14SJ DM74ALS14N DM74ALS14MX DM74ALS14M DM74ALS138SJX DM74ALS138SJ_Q DM74ALS138SJ DM74ALS138N_Q DM74ALS138N DM74ALS138MX DM74ALS138M_Q DM74ALS138M DM74ALS137N_Q DM74ALS137N DM74ALS137MX DM74ALS137M_Q
http://www.suvsystem.com/a/876.aspx
No comments:
Post a Comment